Jumat, 07 Desember 2012

Sejarah matematika

Cabang pengkajian yang dikenal sebagai sejarah matematika adalah penyelidikan terhadap asal mula penemuan di dalam matematika dan sedikit perluasannya, penyelidikan terhadap metode dan notasi matematika pada masa silam.
Sebelum zaman modern dan penyebaran ilmu pengetahuan ke seluruh dunia, contoh-contoh tertulis dari pengembangan matematika telah mengalami kemilau hanya di beberapa tempat. Tulisan matematika terkuno yang telah ditemukan adalah Plimpton 322 (matematika Babilonia sekitar 1900 SM),[1] Lembaran Matematika Rhind (Matematika Mesir sekitar 2000-1800 SM)[2] dan Lembaran Matematika Moskwa (matematika Mesir sekitar 1890 SM). Semua tulisan itu membahas teorema yang umum dikenal sebagai teorema Pythagoras, yang tampaknya menjadi pengembangan matematika tertua dan paling tersebar luas setelah aritmetika dasar dan geometri.
Sumbangan matematikawan Yunani memurnikan metode-metode (khususnya melalui pengenalan penalaran deduktif dan kekakuan matematika di dalam pembuktian matematika) dan perluasan pokok bahasan matematika.[3] Kata "matematika" itu sendiri diturunkan dari kata Yunani kuno, μάθημα (mathema), yang berarti "mata pelajaran".[4] Matematika Cina membuat sumbangan dini, termasuk notasi posisional. Sistem bilangan Hindu-Arab dan aturan penggunaan operasinya, digunakan hingga kini, mungkin dikembangakan melalui kuliah pada milenium pertama Masehi di dalam matematika India dan telah diteruskan ke Barat melalui matematika Islam.[5][6] Matematika Islam, pada gilirannya, mengembangkan dan memperluas pengetahuan matematika ke peradaban ini.[7] Banyak naskah berbahasa Yunani dan Arab tentang matematika kemudian diterjemahkan ke dalam bahasa Latin, yang mengarah pada pengembangan matematika lebih jauh lagi di Zaman Pertengahan Eropa.
Dari zaman kuno melalui Zaman Pertengahan, ledakan kreativitas matematika seringkali diikuti oleh abad-abad kemandekan. Bermula pada abad Renaisans Italia pada abad ke-16, pengembangan matematika baru, berinteraksi dengan penemuan ilmiah baru, dibuat pada pertumbuhan eksponensial yang berlanjut hingga kini.

Matematika prasejarah

Asal mula pemikiran matematika terletak di dalam konsep bilangan, besaran, dan bangun.[8] Pengkajian modern terhadap fosil binatang menunjukkan bahwa konsep ini tidak berlaku unik bagi manusia. Konsep ini mungkin juga menjadi bagian sehari-hari di dalam kawanan pemburu. Bahwa konsep bilangan berkembang tahap demi tahap seiring waktu adalah bukti di beberapa bahasa zaman kini mengawetkan perbedaan antara "satu", "dua", dan "banyak", tetapi bilangan yang lebih dari dua tidaklah demikian.[8]
Benda matematika tertua yang sudah diketahui adalah tulang Lebombo, ditemukan di pegunungan Lebombo di Swaziland dan mungkin berasal dari tahun 35000 SM.[9] Tulang ini berisi 29 torehan yang berbeda yang sengaja digoreskan pada tulang fibula baboon.[10] Terdapat bukti bahwa kaum perempuan biasa menghitung untuk mengingat siklus haid mereka; 28 sampai 30 goresan pada tulang atau batu, diikuti dengan tanda yang berbeda.[11] Juga artefak prasejarah ditemukan di Afrika dan Perancis, dari tahun 35.000 SM dan berumur 20.000 tahun,[12] menunjukkan upaya dini untuk menghitung waktu.[13]
Tulang Ishango, ditemukan di dekat batang air Sungai Nil (timur laut Kongo), berisi sederetan tanda lidi yang digoreskan di tiga lajur memanjang pada tulang itu. Tafsiran umum adalah bahwa tulang Ishango menunjukkan peragaan terkuno yang sudah diketahui tentang barisan bilangan prima[10] atau kalender lunar enam bulan.[14] Periode Predinastik Mesir dari milenium ke-5 SM, secara grafis menampilkan rancangan-rancangan geometris. Telah diakui bahwa bangunan megalit di Inggris dan Skotlandia, dari milenium ke-3 SM, menggabungkan gagasan-gagasan geometri seperti lingkaran, elips, dan tripel Pythagoras di dalam rancangan mereka.[15]

Mesopotamia

Matematika Babilonia merujuk pada seluruh matematika yang dikembangkan oleh bangsa Mesopotamia (kini Iraq) sejak permulaan Sumeria hingga permulaan peradaban helenistik.[16] Dinamai "Matematika Babilonia" karena peran utama kawasan Babilonia sebagai tempat untuk belajar. Pada zaman peradaban helenistik Matematika Babilonia berpadu dengan Matematika Yunani dan Mesir untuk membangkitkan Matematika Yunani. Kemudian di bawah Kekhalifahan Islam, Mesopotamia, terkhusus Baghdad, sekali lagi menjadi pusat penting pengkajian Matematika Islam.
Bertentangan dengan langkanya sumber pada Matematika Mesir, pengetahuan Matematika Babilonia diturunkan dari lebih daripada 400 lempengan tanah liat yang digali sejak 1850-an.[17] Ditulis di dalam tulisan paku, lempengan ditulisi ketika tanah liat masih basah, dan dibakar di dalam tungku atau dijemur di bawah terik matahari. Beberapa di antaranya adalah karya rumahan.
Bukti terdini matematika tertulis adalah karya bangsa Sumeria, yang membangun peradaban kuno di Mesopotamia. Mereka mengembangkan sistem rumit metrologi sejak tahun 3000 SM. Dari kira-kira 2500 SM ke muka, bangsa Sumeria menuliskan tabel perkalian pada lempengan tanah liat dan berurusan dengan latihan-latihan geometri dan soal-soal pembagian. Jejak terdini sistem bilangan Babilonia juga merujuk pada periode ini.[18]
Sebagian besar lempengan tanah liat yang sudah diketahui berasal dari tahun 1800 sampai 1600 SM, dan meliputi topik-topik pecahan, aljabar, persamaan kuadrat dan kubik, dan perhitungan bilangan regular, invers perkalian, dan bilangan prima kembar.[19] Lempengan itu juga meliputi tabel perkalian dan metode penyelesaian persamaan linear dan persamaan kuadrat. Lempengan Babilonia 7289 SM memberikan hampiran bagi √2 yang akurat sampai lima tempat desimal.
Matematika Babilonia ditulis menggunakan sistem bilangan seksagesimal (basis-60). Dari sinilah diturunkannya penggunaan bilangan 60 detik untuk semenit, 60 menit untuk satu jam, dan 360 (60 x 6) derajat untuk satu putaran lingkaran, juga penggunaan detik dan menit pada busur lingkaran yang melambangkan pecahan derajat. Kemajuan orang Babilonia di dalam matematika didukung oleh fakta bahwa 60 memiliki banyak pembagi. Juga, tidak seperti orang Mesir, Yunani, dan Romawi, orang Babilonia memiliki sistem nilai-tempat yang sejati, di mana angka-angka yang dituliskan di lajur lebih kiri menyatakan nilai yang lebih besar, seperti di dalam sistem desimal. Bagaimanapun, mereka kekurangan kesetaraan koma desimal, dan sehingga nilai tempat suatu simbol seringkali harus dikira-kira berdasarkan konteksnya.
Matematika Babilonia merujuk pada seluruh matematika yang dikembangkan oleh bangsa Mesopotamia (kini Iraq) sejak permulaan Sumeria hingga permulaan peradaban helenistik.[16] Dinamai "Matematika Babilonia" karena peran utama kawasan Babilonia sebagai tempat untuk belajar. Pada zaman peradaban helenistik Matematika Babilonia berpadu dengan Matematika Yunani dan Mesir untuk membangkitkan Matematika Yunani. Kemudian di bawah Kekhalifahan Islam, Mesopotamia, terkhusus Baghdad, sekali lagi menjadi pusat penting pengkajian Matematika Islam.
Bertentangan dengan langkanya sumber pada Matematika Mesir, pengetahuan Matematika Babilonia diturunkan dari lebih daripada 400 lempengan tanah liat yang digali sejak 1850-an.[17] Ditulis di dalam tulisan paku, lempengan ditulisi ketika tanah liat masih basah, dan dibakar di dalam tungku atau dijemur di bawah terik matahari. Beberapa di antaranya adalah karya rumahan.
Bukti terdini matematika tertulis adalah karya bangsa Sumeria, yang membangun peradaban kuno di Mesopotamia. Mereka mengembangkan sistem rumit metrologi sejak tahun 3000 SM. Dari kira-kira 2500 SM ke muka, bangsa Sumeria menuliskan tabel perkalian pada lempengan tanah liat dan berurusan dengan latihan-latihan geometri dan soal-soal pembagian. Jejak terdini sistem bilangan Babilonia juga merujuk pada periode ini.[18]
Sebagian besar lempengan tanah liat yang sudah diketahui berasal dari tahun 1800 sampai 1600 SM, dan meliputi topik-topik pecahan, aljabar, persamaan kuadrat dan kubik, dan perhitungan bilangan regular, invers perkalian, dan bilangan prima kembar.[19] Lempengan itu juga meliputi tabel perkalian dan metode penyelesaian persamaan linear dan persamaan kuadrat. Lempengan Babilonia 7289 SM memberikan hampiran bagi √2 yang akurat sampai lima tempat desimal.
Matematika Babilonia ditulis menggunakan sistem bilangan seksagesimal (basis-60). Dari sinilah diturunkannya penggunaan bilangan 60 detik untuk semenit, 60 menit untuk satu jam, dan 360 (60 x 6) derajat untuk satu putaran lingkaran, juga penggunaan detik dan menit pada busur lingkaran yang melambangkan pecahan derajat. Kemajuan orang Babilonia di dalam matematika didukung oleh fakta bahwa 60 memiliki banyak pembagi. Juga, tidak seperti orang Mesir, Yunani, dan Romawi, orang Babilonia memiliki sistem nilai-tempat yang sejati, di mana angka-angka yang dituliskan di lajur lebih kiri menyatakan nilai yang lebih besar, seperti di dalam sistem desimal. Bagaimanapun, mereka kekurangan kesetaraan koma desimal, dan sehingga nilai tempat suatu simbol seringkali harus dikira-kira berdasarkan konteksnya.

Mesir

Matematika Mesir merujuk pada matematika yang ditulis di dalam bahasa Mesir. Sejak peradaban helenistik, Yunani menggantikan bahasa Mesir sebagai bahasa tertulis bagi kaum terpelajar Bangsa Mesir, dan sejak itulah matematika Mesir melebur dengan matematika Yunani dan Babilonia yang membangkitkan Matematika helenistik. Pengkajian matematika di Mesir berlanjut di bawah Khilafah Islam sebagai bagian dari matematika Islam, ketika bahasa Arab menjadi bahasa tertulis bagi kaum terpelajar Mesir.
Tulisan matematika Mesir yang paling panjang adalah Lembaran Rhind (kadang-kadang disebut juga "Lembaran Ahmes" berdasarkan penulisnya), diperkirakan berasal dari tahun 1650 SM tetapi mungkin lembaran itu adalah salinan dari dokumen yang lebih tua dari Kerajaan Tengah yaitu dari tahun 2000-1800 SM.[20] Lembaran itu adalah manual instruksi bagi pelajar aritmetika dan geometri. Selain memberikan rumus-rumus luas dan cara-cara perkalian, perbagian, dan pengerjaan pecahan, lembaran itu juga menjadi bukti bagi pengetahuan matematika lainnya,[21] termasuk bilangan komposit dan prima; rata-rata aritmetika, geometri, dan harmonik; dan pemahaman sederhana Saringan Eratosthenes dan teori bilangan sempurna (yaitu, bilangan 6).[22] Lembaran itu juga berisi cara menyelesaikan persamaan linear orde satu [23] juga barisan aritmetika dan geometri.[24]
Juga tiga unsur geometri yang tertulis di dalam lembaran Rhind menyiratkan bahasan paling sederhana mengenai geometri analitik: (1) pertama, cara memperoleh hampiran \pi yang akurat kurang dari satu persen; (2) kedua, upaya kuno penguadratan lingkaran; dan (3) ketiga, penggunaan terdini kotangen.
Naskah matematika Mesir penting lainnya adalah lembaran Moskwa, juga dari zaman Kerajaan Pertengahan, bertarikh kira-kira 1890 SM.[25] Naskah ini berisikan soal kata atau soal cerita, yang barangkali ditujukan sebagai hiburan. Satu soal dipandang memiliki kepentingan khusus karena soal itu memberikan metoda untuk memperoleh volume limas terpenggal: "Jika Anda dikatakan: Limas terpenggal setinggi 6 satuan panjang, yakni 4 satuan panjang di bawah dan 2 satuan panjang di atas. Anda menguadratkan 4, sama dengan 16. Anda menduakalilipatkan 4, sama dengan 8. Anda menguadratkan 2, sama dengan 4. Anda menjumlahkan 16, 8, dan 4, sama dengan 28. Anda ambil sepertiga dari 6, sama dengan 2. Anda ambil dua kali lipat dari 28 twice, sama dengan 56. Maka lihatlah, hasilnya sama dengan 56. Anda memperoleh kebenaran."
Akhirnya, lembaran Berlin (kira-kira 1300 SM [26]) menunjukkan bahwa bangsa Mesir kuno dapat menyelesaikan persamaan aljabar orde dua.[27]

Matematika Yunani

Pythagoras dari Samos
Matematika Yunani merujuk pada matematika yang ditulis di dalam bahasa Yunani antara tahun 600 SM sampai 300 M.[28] Matematikawan Yunani tinggal di kota-kota sepanjang Mediterania bagian timur, dari Italia hingga ke Afrika Utara, tetapi mereka dibersatukan oleh budaya dan bahasa yang sama. Matematikawan Yunani pada periode setelah Iskandar Agung kadang-kadang disebut Matematika Helenistik.
Thales dari Miletus
Matematika Yunani lebih berbobot daripada matematika yang dikembangkan oleh kebudayaan-kebudayaan pendahulunya. Semua naskah matematika pra-Yunani yang masih terpelihara menunjukkan penggunaan penalaran induktif, yakni pengamatan yang berulang-ulang yang digunakan untuk mendirikan aturan praktis. Sebaliknya, matematikawan Yunani menggunakan penalaran deduktif. Bangsa Yunani menggunakan logika untuk menurunkan simpulan dari definisi dan aksioma, dan menggunakan kekakuan matematika untuk membuktikannya.[29]
Matematika Yunani diyakini dimulakan oleh Thales dari Miletus (kira-kira 624 sampai 546 SM) dan Pythagoras dari Samos (kira-kira 582 sampai 507 SM). Meskipun perluasan pengaruh mereka dipersengketakan, mereka mungkin diilhami oleh Matematika Mesir dan Babilonia. Menurut legenda, Pythagoras bersafari ke Mesir untuk mempelajari matematika, geometri, dan astronomi dari pendeta Mesir.
Thales menggunakan geometri untuk menyelesaikan soal-soal perhitungan ketinggian piramida dan jarak perahu dari garis pantai. Dia dihargai sebagai orang pertama yang menggunakan penalaran deduktif untuk diterapkan pada geometri, dengan menurunkan empat akibat wajar dari teorema Thales. Hasilnya, dia dianggap sebagai matematikawan sejati pertama dan pribadi pertama yang menghasilkan temuan matematika.[30] Pythagoras mendirikan Mazhab Pythagoras, yang mendakwakan bahwa matematikalah yang menguasai semesta dan semboyannya adalah "semua adalah bilangan".[31] Mazhab Pythagoraslah yang menggulirkan istilah "matematika", dan merekalah yang memulakan pengkajian matematika. Mazhab Pythagoras dihargai sebagai penemu bukti pertama teorema Pythagoras,[32] meskipun diketahui bahwa teorema itu memiliki sejarah yang panjang, bahkan dengan bukti keujudan bilangan irasional.
Eudoxus (kira-kira 408 SM sampai 355 SM) mengembangkan metoda kelelahan, sebuah rintisan dari Integral modern. Aristoteles (kira-kira 384 SM sampai 322 SM) mulai menulis hukum logika. Euklides (kira-kira 300 SM) adalah contoh terdini dari format yang masih digunakan oleh matematika saat ini, yaitu definisi, aksioma, teorema, dan bukti. Dia juga mengkaji kerucut. Bukunya, Elemen, dikenal di segenap masyarakat terdidik di Barat hingga pertengahan abad ke-20.[33] Selain teorema geometri yang terkenal, seperti teorem Pythagoras, Elemen menyertakan bukti bahwa akar kuadrat dari dua adalah irasional dan terdapat tak-hingga banyaknya bilangan prima. Saringan Eratosthenes (kira-kira 230 SM) digunakan untuk menemukan bilangan prima.
Archimedes (kira-kira 287 SM sampai 212 SM) dari Syracuse menggunakan metoda kelelahan untuk menghitung luas di bawah busur parabola dengan penjumlahan barisan tak hingga, dan memberikan hampiran yang cukup akurat terhadap Pi.[34] Dia juga mengkaji spiral yang mengharumkan namanya, rumus-rumus volume benda putar, dan sistem rintisan untuk menyatakan bilangan yang sangat besar.

Matematika Cina

Matematika Cina permulaan adalah berlainan bila dibandingkan dengan yang berasal dari belahan dunia lain, sehingga cukup masuk akal bila dianggap sebagai hasil pengembangan yang mandiri.[35] Tulisan matematika yang dianggap tertua dari Cina adalah Chou Pei Suan Ching, berangka tahun antara 1200 SM sampai 100 SM, meskipun angka tahun 300 SM juga cukup masuk akal.[36]
Hal yang menjadi catatan khusus dari penggunaan matematika Cina adalah sistem notasi posisional bilangan desimal, yang disebut pula "bilangan batang" di mana sandi-sandi yang berbeda digunakan untuk bilangan-bilangan antara 1 dan 10, dan sandi-sandi lainnya sebagai perpangkatan dari sepuluh.[37] Dengan demikian, bilangan 123 ditulis menggunakan lambang untuk "1", diikuti oleh lambang untuk "100", kemudian lambang untuk "2" diikuti lambang utnuk "10", diikuti oleh lambang untuk "3". Cara seperti inilah yang menjadi sistem bilangan yang paling canggih di dunia pada saat itu, mungkin digunakan beberapa abad sebelum periode masehi dan tentunya sebelum dikembangkannya sistem bilangan India.[38] Bilangan batang memungkinkan penyajian bilangan sebesar yang diinginkan dan memungkinkan perhitungan yang dilakukan pada suan pan, atau (sempoa Cina). Tanggal penemuan suan pan tidaklah pasti, tetapi tulisan terdini berasal dari tahun 190 M, di dalam Catatan Tambahan tentang Seni Gambar karya Xu Yue.
Karya tertua yang masih terawat mengenai geometri di Cina berasal dari peraturan kanonik filsafat Mohisme kira-kira tahun 330 SM, yang disusun oleh para pengikut Mozi (470–390 SM). Mo Jing menjelaskan berbagai aspek dari banyak disiplin yang berkaitan dengan ilmu fisika, dan juga memberikan sedikit kekayaan informasi matematika.
Pada tahun 212 SM, Kaisar Qín Shǐ Huáng (Shi Huang-ti) memerintahkan semua buku di dalam Kekaisaran Qin selain daripada yang resmi diakui pemerintah haruslah dibakar. Dekret ini tidak dihiraukan secara umum, tetapi akibat dari perintah ini adalah begitu sedikitnya informasi tentang matematika Cina kuno yang terpelihara yang berasal dari zaman sebelum itu. Setelah pembakaran buku pada tahun 212 SM, dinasti Han (202 SM–220 M) menghasilkan karya matematika yang barangkali sebagai perluasan dari karya-karya yang kini sudah hilang. Yang terpenting dari semua ini adalah Sembilan Bab tentang Seni Matematika, judul lengkap yang muncul dari tahun 179 M, tetapi wujud sebagai bagian di bawah judul yang berbeda. Ia terdiri dari 246 soal kata yang melibatkan pertanian, perdagangan, pengerjaan geometri yang menggambarkan rentang ketinggian dan perbandingan dimensi untuk menara pagoda Cina, teknik, survey, dan bahan-bahan segitiga siku-siku dan π. Ia juga menggunakan prinsip Cavalieri tentang volume lebih dari seribu tahun sebelum Cavalieri mengajukannya di Barat. Ia menciptakan bukti matematika untuk teorema Pythagoras, dan rumus matematika untuk eliminasi Gauss. Liu Hui memberikan komentarnya pada karya ini pada abad ke-3 M.
Zhang Heng (78–139)
Sebagai tambahan, karya-karya matematika dari astronom Han dan penemu Zhang Heng (78–139) memiliki perumusan untuk pi juga, yang berbeda dari cara perhitungan yang dilakukan oleh Liu Hui. Zhang Heng menggunakan rumus pi-nya untuk menentukan volume bola. Juga terdapat karya tertulis dari matematikawan dan teoriwan musik Jing Fang (78–37 SM); dengan menggunakan koma Pythagoras, Jing mengamati bahwa 53 perlimaan sempurna menghampiri 31 oktaf. Ini kemudian mengarah pada penemuan 53 temperamen sama, dan tidak pernah dihitung dengan tepat di tempat lain hingga seorang Jerman, Nicholas Mercator melakukannya pada abad ke-17.
Bangsa Cina juga membuat penggunaan diagram kombinatorial kompleks yang dikenal sebagai kotak ajaib dan lingkaran ajaib, dijelaskan di zaman kuno dan disempurnakan oleh Yang Hui (1238–1398 M). Zu Chongzhi (abad ke-5) dari Dinasti Selatan dan Utara menghitung nilai pi sampai tujuh tempat desimal, yang bertahan menjadi nilai pi paling akurat selama hampir 1.000 tahun.
Bahkan setelah matematika Eropa mulai mencapai kecemerlangannya pada masa Renaisans, matematika Eropa dan Cina adalah tradisi yang saling terpisah, dengan menurunnya hasil matematika Cina secara signifikan, hingga para misionaris Jesuit seperti Matteo Ricci membawa gagasan-gagasan matematika kembali dan kemudian di antara dua kebudayaan dari abad ke-16 sampai abad ke-18.

Matematika India

Arca Aryabhata. Karena informasi tentang keujudannya tidak diketahui, perupaan Aryabhata didasarkan pada daya khayal seniman.
Peradaban terdini anak benua India adalah Peradaban Lembah Indus yang mengemuka di antara tahun 2600 dan 1900 SM di daerah aliran Sungai Indus. Kota-kota mereka teratur secara geometris, tetapi dokumen matematika yang masih terawat dari peradaban ini belum ditemukan.[39]
Matematika Vedanta dimulakan di India sejak Zaman Besi. Shatapatha Brahmana (kira-kira abad ke-9 SM), menghampiri nilai π,[40] dan Sulba Sutras (kira-kira 800–500 SM) yang merupakan tulisan-tulisan geometri yang menggunakan bilangan irasional, bilangan prima, aturan tiga dan akar kubik; menghitung akar kuadrat dari 2 sampai sebagian dari seratus ribuan; memberikan metode konstruksi lingkaran yang luasnya menghampiri persegi yang diberikan,[41] menyelesaikan persamaan linear dan kuadrat; mengembangkan tripel Pythagoras secara aljabar, dan memberikan pernyataan dan bukti numerik untuk teorema Pythagoras.
Pāṇini (kira-kira abad ke-5 SM) yang merumuskan aturan-aturan tata bahasa Sanskerta.[42] Notasi yang dia gunakan sama dengan notasi matematika modern, dan menggunakan aturan-aturan meta, transformasi, dan rekursi. Pingala (kira-kira abad ke-3 sampai abad pertama SM) di dalam risalahnya prosody menggunakan alat yang bersesuaian dengan sistem bilangan biner. Pembahasannya tentang kombinatorika meter bersesuaian dengan versi dasar dari teorema binomial. Karya Pingala juga berisi gagasan dasar tentang bilangan Fibonacci (yang disebut mātrāmeru).[43]
Surya Siddhanta (kira-kira 400) memperkenalkan fungsi trigonometri sinus, kosinus, dan balikan sinus, dan meletakkan aturan-aturan yang menentukan gerak sejati benda-benda langit, yang bersesuaian dengan posisi mereka sebenarnya di langit.[44] Daur waktu kosmologi dijelaskan di dalam tulisan itu, yang merupakan salinan dari karya terdahulu, bersesuaian dengan rata-rata tahun siderik 365,2563627 hari, yang hanya 1,4 detik lebih panjang daripada nilai modern sebesar 365,25636305 hari. Karya ini diterjemahkan ke dalam bahasa Arab dan bahasa Latin pada Zaman Pertengahan.
Aryabhata, pada tahun 499, memperkenalkan fungsi versinus, menghasilkan tabel trigonometri India pertama tentang sinus, mengembangkan teknik-teknik dan algoritma aljabar, infinitesimal, dan persamaan diferensial, dan memperoleh solusi seluruh bilangan untuk persamaan linear oleh sebuah metode yang setara dengan metode modern, bersama-sama dengan perhitungan astronomi yang akurat berdasarkan sistem heliosentris gravitasi.[45] Sebuah terjemahan bahasa Arab dari karyanya Aryabhatiya tersedia sejak abad ke-8, diikuti oleh terjemahan bahasa Latin pada abad ke-13. Dia juga memberikan nilai π yang bersesuaian dengan 62832/20000 = 3,1416. Pada abad ke-14, Madhava dari Sangamagrama menemukan rumus Leibniz untuk pi, dan, menggunakan 21 suku, untuk menghitung nilai π sebagai 3,14159265359.

 


 


 

 

 

 

 

 

Pengertian  Matematika 
 
Kata matamatika sudah tidak asing lagi bagi kita, matematika merupakan ratu dari ilmu pengetahuan dimana materi matematika di perlukan di semua jurusan yang di pelajarai oleh semua orang, disini saya memberikan sebuah pengertian matematika disertai fungsinya serta ruang lingkup pembelajarannya 
Berhitung merupakan aktifitas sehari-hari tiada aktifitas tanpa menggunakan matematika, akan tetapi banyak yang tidak tahu apa pengertian matematika, apa  istilah matematika dari berbagai negara, ruang lingkupnya dan masih banyak lagi.

Istilah mathematics (Inggris), mathematik (Jerman), mathematique (Perancis), matematico (Itali), matematiceski (Rusia), atau mathematick (Belanda) berasal dari perkataan latin mathematica, yang mulanya diambil dari perkataan Yunani, mathematike, yang berarti “relating to learning”. Perkataan mathematike berhubungan sangat erat dengan sebuah kata lainnya yang serupa, yaitu mathanein yang mengandung arti belajar (berpikir). Jadi berdasarkan etimologis (Elea Tinggih dalam Erman Suherman, 2003:16), perkataan matematika berarti “ilmu pengetahuan yang diperoleh dengan bernalar”.

James dan James (1976) dalam kamus matematikanya mengatakan bahwa matematika adalah ilmu tentang logika mengenai bentuk, susunan, besaran, dan konsep-konsep yang berhubungan satu dengan yang lainnya dengan jumlah yang banyak yang terbagi ke dalam tiga bidang, yaitu aljabar, analisis dan geometri.

Johnson dan Rising (1972) dalam bukunya mengatakan bahwa matematika adalah pola pikir, pola mengorganisasikan, pembuktian yang logik, matematika itu adalah bahasa yang menggunakan istilah yang didefinisikan dengan cermat, jelas, dan akurat, representasinya dengan simbol dan padat, lebih berupa bahasa simbol mengenai ide dari pada mengenai bunyi. Sementara Reys, dkk. (1984) mengatakan bahwa matematika adalah telaah tentang pola dan hubungan, suatu jalan atau pola pikir, suatu seni, suatu bahasa, dan suatu alat.

Berdasarkan pendapat di atas, maka disimpulkan bahwa ciri yang sangat penting dalam matematika adalah disiplin berpikir yang didasarkan pada berpikir logis, konsisten, inovatif dan kreatif.

Matematika berfungsi mengembangkan kemampuan menghitung, mengukur, menurunkan dan menggunakan rumus matematika yang diperlukan dalam kehidupan sehari-hari melalui pengukuran dan geometri, aljabar, peluang dan statistik, kalkulus dan trigonometri. Matematika juga berfungsi mengembangkan kemampuan mengkomunikasikan gagasan melalui model matematika yang dapat berupa kalimat matematika dan persamaan matematika, diagram, grafik atau tabel.

Tujuan umum pendidikan matematika ditekankan kepada siswa untuk memiliki:
  1. Kemampuan yang berkaitan dengan matematika yang dapat digunakan dalam memecahkan masalah matematika, pelajaran lain ataupun masalah yang berkaitan dengan kehidupan nyata.
  2. Kemampuan menggunakan matematika sebagai alat komunikasi.
  3. Kemampuan menggunakan matematika sebagai cara bernalar yang dapat dialihgunakan pada setiap keadaan, seperti berpikir kritis, berpikir logis, berpikir sistematis, bersifat objektif, bersifat jujur, bersifat disiplin dalam memandang dan menyelesaikan suatu masalah.
c.    Ruang lingkup.
Standar kompetensi matematika merupakan seperangkat kompetensi matematika yang dibukukan dan harus ditunjukkan oleh siswa pada hasil belajarnya dalam mata pelajaran matematika. Standar ini dirinci dalam komponen kompetensi dasar beserta hasil belajarnya, indikator dan materi pokok untuk setiap aspeknya. Pengorganisasian dan pengelompokan materi pada materi didasarkan menurut disiplin ilmunya atau didasarkan menurut kemahiran atau kecakapan yang hendak dicapai. Aspek atau ruang lingkup materi pada standar kompetensi matematika adalah bilangan, pengukuran dan geometri, aljabar, trigonometri, peluang dan statistik, dan kalkulus.
d.    Standar Kompetensi Mata Pelajaran Matematika.

Untuk mata pelajaran matematika di SMA, telah dirumuskan sembilan standar kompetensi (Direktorat Pendidikan Menengah Umum, Ditjen. Dikdasmen, Depdiknas; 2003:2) sebagai berikut:
  1. Menggunakan operasi dan sifat serta sifat manipulasi aljabar dalam pemecahan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma; persamaan kuadrat dan fungsu kuadrat; sistem persamaan linear-kuadrat; pertidaksamaan satu variabel; logika matematika.
  2. Menggunakan perbandingan fungsi, persamaan, dan identitas persamaan trigonometri dalam pemecahan masalah.
  3. Menggunakan sifat dan aturan geometri dalam menentukan kedudukan titik, garis dan bidang; jarak; sudut; dan volum.
  4. Menggunakan aturan statistika dalam menyajikan dan meringkas data dengan berbagai cara serta memberi tafsiran; menyusun dan menggunakan kaidah pencacahan dalam menentukan banyak kemungkinan; dan menggunakan aturan peluang dalam menentukan dan menafsirkan peluang kejadian majemuk.
  5. Menggunakan manipulasi aljabar untuk merancang rumus trigonometri dan menyusun bukti.
  6. Menyusun dan menggunakan persamaan lingkaran beserta garis singgungnya; menggunakan algoritma pembagian, teorema sisa, dan teorema faktor dalam pemecahan masalah; menggunakan operasi dan manipulasi aljabar dalam pemecahan masalah yang berkaitan dengan fungsi komposisi dan fungsi invers.
  7. Menggunakan konsep limit fungsi dan turunan dalam pemecahan masalah.
  8. Menggunakan konsep integral dalam pemecahan masalah.
  9. Merancang dan menggunakan model matematika program linear serta menggunakan sifat dan aturan yang berkaitan dengan barisan, deret, matriks, vektor, transformasi, fungsi eksponen dan logaritma dalam pemecahan masalah.

PREDIKDI SOAL UN 2013 SMA IPA/IPS

PREDIKSI SOAL UN 2013 SMA IPA/IPS

Ujian Nasinanal tahun 2013 semakin dekat, banyak yang harus dipersiapkan oleh siswa maupun para guru, semua berharap siswa dapat lulus semua dengan nilai yang gemilang, walaupun banyak pro dan kontra tentang urgensi pelaksanaan Ujian Nasional itu sendiri karena banyaknya perbedaan sudut pandang mereka tentang Urgensi Pelaksanaan Ujian Nasional 2012, yang pelaksanaannya bisa dilihat disini.
Baiklah kiat gak perlu memperpanjang tentang pro dan kontranya, bagi siswa dan guru serta orang tua, mempersiapkan siswa supaya bisa lulus dengan nilai yang gemilang, berikut kami hanya bisa membantu menambah referensi soal Ujian Nasional sebagai bahan acuan belajar.
berikut ini adalah link untuk download soal-soal yang akan diujikan pada Ujian Nasional SMA Tahun 2013

Cara Cepat Belajar Matematika & Trik Cepat Belajar Matematika

"Bagaimana cara belajar matematika yang benar?"

“Belajar matematika adalah belajar hidup. Matematika adalah jalan hidup.”

 
Trachtenberg mempertaruhkan jiwanya menentang Hitler. Trachtenberg, setelah menyelami prinsip-prinsip matematika, menyimpulkan bahwa prinsip kehidupan adalah keharmonisan. Peperangan yang terus berkobar, menyulut kebencian tidak sesuai dengan prinsip-prinsip matematika. Matematika adalah keindahan.
Atas penentangannya ini, Hitler menghadiahi Trachtenberg hukuman penjara. Bagi Trachtenberg, perjara bukan apa-apa. Di dalam penjara, dia justru memiliki kesempatan memikirkan matematika tanpa banyak gangguan. Karena sulit mendapatkan alat tulis-menulis, Trachtenberg mengembangkan pendekatan matematika yang berbasis mental-imajinasi.
Seribu tahun sebelum itu, AlKhawaritzmi mengembangkan disiplin matematika baru: aljabar. AlKharitzmi beruntung hidup dalam lingkungan agama Islam yang kuat. Ajaran Islam, secara inheren, menuntut keterampilan matematika tingkat tinggi. Misalnya, Islam menetapkan aturan pembagian waris yang detil. Pembagian waris sistem Islam melibatkan banyak variabel matematis. Variabel-variabel yang beragam ini menantang penganut Islam – termasuk AlKhawaritzmi – untuk mencari pemecahan yang elegan.

Pemecahan terhadap sistem persamaan yang melibatkan banyak variabel ini membawa ke arah disiplin baru matematika: aljabar. AlKhawaritzmi menulis buku khusus tentang aljabar yang sangat fenomenal. Buku yang berjudul Aljabar ini menjadi panutan bagi matematikawan seluruh dunia. Sehingga nama AlKhawaritzmi menjadi dikenal sebagai Aljabar AlKhawaritzmi (Algebra Algorithm).
Sistem kalender Islam yang berbasis pada komariah (bulan, lunar) memberikan tantangan tersendiri. Penetapan awal bulan menjadi krusial di dalam Islam. Berbeda dengan kalender syamsiah (matahari, solar). Dalam kalender syamsiah, kita tidak begitu sensitif apa berbedaan tanggal 1 Juni dengan 2 Juni. Tetapi pada sistem komariah, perbedaan 1 Ramadhan denga 2 Ramadhan berdampak besar.
Itulah sebabnya, astronomi Islam dapat maju lebih awal. Astronomi memicu lebih berkembangnya teori trigonometri. Aturan sinus, cosinus, dan kawan-kawan berkembang pesat di tangan para astronom Islam waktu itu.
Ajaran agama Islam adalah jalan hidup. Untuk bisa melaksanakan ajaran Islam diperlukan matematika. Matematika menjadi jalan hidup.
Sehebat itukah peran matematika?
Haruskah kita mengambil matematika sebagai jalan hidup?
Tidak selalu! Tidak semua orang perlu mengambil matematika sebagai jalan hidup. Tidak harus semua orang meniru AlKhawaritzmi dan Trachtenberg.
Beberapa orang belajar matematika hanya untuk kesenangan. Beberapa orang yang lain belajar karena kewajiban. Ada pula yang belajar matematika agar naik jabatan. Ada juga agar lulus UN, SPMB, UMPTN. Ada juga untuk menjadi juara.
Masing-masing tujuan, berimplikasi kepada cara belajar matematika yang berbeda. Misalnya bila Anda belajar matematika untuk kepentingan lulus UN, SPMB, UMPTN 2008 akan berbeda dengan belajar untuk memenangkan olimpiade matematika.
Matematika UN, SPMB, UMPTN 2008 hanya menerapkan soal pilihan ganda. Implikasinya Anda hanya dinilai dari jawaban akhir Anda. Proses Anda menemukan jawaban itu tidak penting. Jadi Anda harus memilih siasat yang cepat dan tepat.
Gunakan berbagai macam rumus cepat dalam matematika. Rumus cepat ampuh Anda gunakan untuk UN, SPMB, UMPTN. Tetapi rumus cepat matematika tidak akan berguna untuk olimpiade atau kuliah kalkulus kelak di perguruan tinggi. Anda harus sadar itu.
Contoh rumus cepat matematika yang sering (hampir selalu) berguna ketika UN, SPMB, UMPTN adalah rumus tentang deret aritmetika.

Contoh soal:
Jumlah n suku pertama dari suatu deret adalah Sn = 3n^2 + n. Maka suku ke-11 dari deret tersebut adalah…
Tentu ada banyak cara untuk menyelesaikan soal ini.
Cara pertama, tentukan dulu rumus Un kemudian hitung U11. Cara ini cukup panjang. Tetapi bagus Anda coba untuk meningkatkan keterampilan dan pemahaman konsep deret. Rumus Un dapat kita peroleh dari selisih Sn – S(n-1) .

Cara kedua, sedikit lebih cerdik dari cara pertama. Kita tidak perlu menentukan rumus Un. Karena kita memang tidak ditanya rumus tersebut. Kita langsung menghitung U11 dengan cara menghitung selisih
S11 – S10 = U11
[3(11^2) + 11] – [3(10^2) + 10]
= 3.121 – 3.100 + 11 – 10
= 3.21 + 1
= 64

Cara ketiga, adalah rumus matematika paling cepat dari kedua rumus di atas. Tetapi sebelum menerapkan cara ketiga, kita harus memahami konsepnya terlebih dahulu dengan baik.
Are you ready?
Bentuk baku dari n suku pertama deret aritmetika adalah
Sn = (b/2)n^2 + k.n
Un = b(n-1) + a
a = S1 = U1

Anda harus pahami konsep di atas dengan baik. Cobalah untuk beberapa soal yang berbeda-beda. Tanpa pemahaman konsep yang baik, rumus cepat ini akan berubah menjadi rumus berat.
Dengan hanya melihat soal (tanpa menghitung di kertas) bahwa
Sn = 3n^2 + n
Kita peroleh
b = 6 (dari 3 x 2)
a = 4 (dari S1 = 3 + 1)
U11 = 6.10 + 4 = 64 (Selesai)

Semua perhitungan di atas dapat kita lakukan tanpa menggunakan alat tulis. Semua kita lakukan hanya dalam imajinasi kita. Ulangi beberapa kali. Anda pasti akan menguasainya dengan baik.
Trik untuk menguasai rumus cepat matematika adalah kuasai pula rumus standarnya – rumus biasanya. Dengan menguasai dua cara ini Anda akan semakin terampil menggunakan rumus cepat matematika.

MENGENAL MATEMATIKA 

Bilangan Berpangkat Dan Bentuk Akar

Bilangan Bulat dengan Eksponen Bilangan Bulat Positif

Masih ingat bentuk berikut :
32 = 3 x 3
23 = 2 x 2 x 2
56 = 5 x 5 x 5 x 5 x 5 x 5
Demikian seterusnya sehingga diperoleh bentuk umum sebagai berikut.
Gambar:36.jpg
Dengan a bilangan bulat dan n bilangan bulat positif Dari pengertian di atas akan diperoleh sifat-sifat berikut.
Sifat 1
an x an = am + n
24 x 23 = (2 x 2 x 2 x 2 )x(2 x 2 x 2 )
           = 2 x 2 x 2 x 2 x 2 x 2 x 2
           = 27
           = 24+3
Sifat 2
am : an = am - n, m > n
55 : 53 = (5 x 5 x 5 x 5 x 5) : (5 x 5 x 5)
           = 5 x 5
           = 52
           = 55 - 3
Sifat 3
(am)n = am x n
(34)2 = 34 x 34
       = (3 x 3 x 3 x 3) x (3 x 3 x 3 x 3)
       = (3 x 3 x 3 x 3 x 3 x 3 x 3 x 3)
       = 38
       = 34 x 2
Sifat 4
(a x b)m = am x bm
(4 x 2)3 = (4 x 2) x (4 x 2) x (4 x 2)
           = (4 x 4 x 4) x (2 x 2 x 2)
           = 43 x 23
Sifat 5
(a : b)m = am : bm
(6 : 3) 4 = (6 : 3) x (6 : 3) x (6 : 3) x (6 : 3)
            = (6 x 6 x 6 x 6) : (3 x 3 x 3 x 3)
            = 64 : 34

Bilangan Bulat dengan Eksponen Bilangan Bulat Negatif

Gambar:37.jpg
Dari pola bilangan itu dapat disimpulkan bahwa 20 = 1 dan 2-n = 1/2n , secara umum dapat ditulis :
Gambar:38.jpg
Pecahan Berpangkat Bilangan Bulat
Kita telah mengetahui bahwa pecahan adalah bilangan dalam bentuk dengun a dan b bilangan bulat (b ≠ 0). Bagaimanakah jika pecahan dipangkatkan dengan bilangan bulat? Untuk menentukan hasil pecahan yang dipangkatkan dengan bilangan bulat, caranya sama dengan menentukan hasil bilangan bulat yang dipangkatkan dengan bilangan bulat.
Contoh:
Tentukan hasil berikut ini!
 (1/2)5
Jawab :
Gambar:39.jpg

Bentuk Akar dan Bilangan Berpangkat Pecahan

Bilangan Rasional dan Irasional
Bilangan rasional adalah bilangan yang dapat dinyatakan dalam bentuk a/b dengan a, b bilangan bulat dan b ≠ 0. Bilangan rasional merupakan gabungan dari bilangan bulat, nol, dan pecahan. Contoh bilangan rasional adalah -5, -1/2, 0, 3, 3/4, dan 5/9.
Sebaliknya, bilangan irasional adalah bilangan yang tidak dapat dinyatakan dalam bentuk a/b dengan a, b bilangan bulat dan b ≠ 0.
Contoh bilangan irasional adalah . Bilangan-bilangan tersebut, jika dihitung dengan kalkulator merupakan desimal yang tak berhenti atau bukan desimal yang berulang. Misalnya
√2 = 1,414213562 .... Selanjutnya, gabungan anrara bilangan rasional dan irasional disebut bilangan real.

Bentuk Akar

Berdasarkan pembahasan sebelumnya, contoh bilangan irasional adalah √2 dan √5 . Bentuk seperti itu disebut bentuk akar. Dapatkah kalian menyebutkan contoh yang lain?
Bentuk akar adalah akar dari suatu bilangan yang hasilnya bukan bilangan Rasional.
Bentuk akar dapat disederhanakan menjadi perkalian dua buah akar pangkat bilangan dengan salah satu akar memenuhi definisi
√a2 = a jika a ≥ 0, dan –a jika a < 0
Contoh :
Sederhanakan bentuk akar berikut √75
Jawab :
√75 = √25x3 = √25 x √3 = 5√3

Mengubah Bentuk Akar Menjadi Bilangan Berpangkat Pecahan dan Sebaliknya

Bentuk √a dengan a bilangan bulat tidak negatif disebut bentuk akar kuadrat dengan syarat tidak ada bilangan yang hasil kuadratnya sama dengan a. oleh karena itu √2,√3, √5, √10, √15 dan √19 merupakan bentuk akar kuadrat. Untuk selanjutnya, bentuk akar n√am dapat ditulis am/n (dibaca: a pangkat m per n). Bentuk am/n disebut bentuk pangkat pecahan.
contoh :
Gambar:40.jpg

jawab :
Gambar:41.jpg

Operasi Aljabar pada Bentuk Akar

Penjumlahan dan Pengurangan

Penjumlahan dan pengurangan pada bentuk akar dapat dilakukan jika memiliki suku-suku yang sejenis.

Gambar:42.jpg
kesimpulan :
jika a, c = Rasional dan b ≥ 0, maka berlaku
a√b + c√b = (a + c)√b
a√b - c√b = (a - c)√b

Perkalian dan Pembagian

Contoh :
Tentukan hasil operasi berikut :
Gambar:43.jpg
jawab :
Gambar:44.jpg

Perpangkatan

Kalian tentu masih ingat bahwa (a^)" = a^'. Rumus tersebut juga berlaku pada operasi perpangkatan dari akar suatu bilangan.
Contoh:
Gambar:45.jpg

Operasi Campuran

Dengan memanfaatkan sifat-sifat pada bilangan berpangkat, kalian akan lebih mudah menyelesaikan soal-soal operasi campuran pada bentuk akarnya. Sebelum melakukan operasi campuran, pahami urutan operasi hitung berikut.
  • Prioritas yang didahulukan pada operasi bilangan adalah bilangan-bilangan yang ada dalam tanda kurung.
  • Jika tidak ada tanda kurungnya maka
  1. pangkat dan akar sama kuat;
  2. kali dan bagi sama kuat;
  3. tambah dan kurang sama kuat, artinya mana yang lebih awal dikerjakan terlebih dahulu;
  4. kali dan bagi lebih kuat daripada tambah dan kurang, artinya kali dan bagi dikerjakan terlebih dahulu.
Contoh :
Gambar:46.jpg

Merasionalkan Penyebut

Dalam perhitungan matematika, sering kita temukan pecahan dengan penyebut bentuk akar, misalnya Gambar:47.jpg
Agar nilai pecahan tersebut lebih sederhana maka penyebutnya harus dirasionalkan terlebih dahulu. Artinya tidak ada bentuk akar pada penyebut suatu pecahan. Penyebut dari pecahan-pecahan yang akan dirasionalkan berturut-turut adalah Gambar:48.jpg
Merasionalkan penyebut adalah mengubah pecahan dengan penyebut bilangan irasional menjadi pecahan dengan penyebut bilangan rasional.

Penyebut Berbentuk √b

Jika a dan b adalah bilangan rasional, serta √b adalah bentuk akar maka pecahan a/√b dapat dirasionalkan penyebutnya dengan cara mengalikan pecahan tersebut dengan √b/√b .
Gambar:49.jpg

Contoh :
Sederhanakan pecahan berikut dengan merasionalkan penyebutnya!
Gambar:50.jpg
jawab :
Gambar:51.jpg

Penyebut Berbentuk (a+√b) atau (a+√b)

Jika pecahan-pecahan mempunyai penyebut berbentuk (a+√b) atau (a+√b) maka pecahan tersebut dapat dirasionalkan dengan cara mengalikan pembilang dan penyebutnya dengan sekawannya. Sekawan dari (a+√b) adalah (a+√b) adalah dan sebaliknya.
Bukti
Gambar:52.jpg
Contoh :
Rasionalkan penyebut pecahan berikut.
Gambar:53.jpg
jawab :
Gambar:54.jpg

Penyebut Berbentuk (√b+√d) atau (√b+√d)

Pecahan tersebut dapat dirasionalkan dengan mengalikan pembilang dan penyebutnya dengan bentuk akar sekawannya, yaitu sebagai berikut.
Gambar:55.jpg
Contoh:
Selesaikan soal berikut!
Gambar:56.jpg
Jawab :
gambar:57.jpg

STATISTIKA

Pengumpulan Data

Data adalah sesuatu yang dapat memberikan gambaran tentang suatu keadaan atau persoalan. Data berbentuk bilangan disebut data kuantitatif sedangkan data yang berbentuk bukan bilangan disebut data kualitatif. Data kuantitatif terdiri atas data diskrit dan data kontinu.Data diskrit adalah data yang diperoleh dengan membilang, mencacah, atau menghitung, misalnya data jumlah penduduk dan data jumlah anak dalam keluarga. Adapun data kontinu adalah data yang diperoleh dari hasil mengukur, misalnya data tinggi badan dan data berat badan.
Jangkauan = data terbesar - data terkecil

Penyajian Data

Penyajian Data Menggunakan Tabel

Tabel Frekuensi Data Tunggal
Penyajian data tunggal dalam bentuk tabel dinamakan distribusi frekuensi data tunggal. Agar pembahasan lebih jelas, perhatikan contoh berikut.
Pada sensus penduduk suatu desa didapatkan data jumlah anak yang dimiliki oleh tiap keluarga sebagai berikut.
1
4
3
4
5
4
3
6
1
2
2
3
2
4
1
6
5
3
4
3
4
4
5
4
4
4
6
5
4
4
2
4
3
3
2
4
2
3
4
1
Data di atas belum tersusun secara teratur sehingga sulit untuk mengetahui informasi data itu, seperti jumlah keluarga yang mempunyai 4 anak dan keluarga yang mempunyai anak lebih dari 3. Agar lebih mudah dipahami, data tersebut disajikan dalam tabel frekuensi data tunggal. Pada tabel frekuensi data tunggal, tiap-tiap baris pada kolom nilai atau data hanya memuat satu nilai atau data. Tabel dibagi menjadi 3 kolom. Kolom pertama adalah datanya. Kolom kedua adalah turus, yaitu cara mencacah data menggunakan simbol I. setiap menemukan data yang bersesuaian dengan data yang diperoleh. Kolom ketiga adalah frekuensi, yaitu jumlah turus atau simbol I pada data tertentu.
Jumlah anak Turus
Frekuensi
1
////
4
2
//////
6
3
////////
8
4
///////////////
15
5
////
4
6
///
3
jumlah

40
  • Tabel Frekuensi Data yang Dikelompokkan
Penyajian data berkelompok dalam bentuk tabel dinamakan distribusi frekuensi data berkelompok. Perhatikan contoh berikut.
Nilai ulangan Matematika siswa kelas IX suatu SMP adalah sebagai berikut.
44
54
85
92
73
99
91
96
74
75
70
57
83
49
57
52
64
73
82
90
70
89
91
67
52
64
73
82
59
65
79
82
89
53
52
50

Dari data terlihat bahwa nilai teninggi dan terendah mempunyai range (angkauan) yang besar, yaitu 99 - 44 = 55. Jika data tersebut disajikan menggunakan tabel frekuensi data tunggal menjadi tidak praktis maka perlu disajikan menggunakan pengelompokan data. Pada tabel frekuensi data berkelompok, tiap-tiap baris pada kolom nilai atau data memuat beberapa nilai atau data. Istilah-istilah yang harus dipahami dalam pembuatan tabel frekuensi data yang dikelompokkan adalah sebagai berikut.
  1. Kelas interval : pengelompokan beberapa nilai atau data.
  2. Banyak kelas interval : banyaknya pengelompokan dari seluruh data atau nilai yang ada.
  3. Panjang interval : banyaknya data pada suatu kelas interval. Panjang interval untuk semua kelas interval pada suatu tabel harus sama.
Dengan pengertian istilah-istilah di atas diperoleh tabel frekuensi data yang dikelompokkan untuk nilai ulangan matematika siswa kelas IX adalah sebagai berikut.
Nilai
Turus
Frekuensi
44-51
///
3
52-59
////////
8
60-67
////
4
68-75
//////
6
76-83
/////
5
84-91
///////
7
92-99
///
3
jumlah

36
Tabel frekuensi di atas memiliki
a. banyak kelas interval (pengelompokan) = 7 ;
b. panjang kelas interval (banyak data pada satu interval) = 8.
1. Pada penyajian data dalam bentuk tabel frekuensi data yang dikelompokkan, data terkecil dan terbesar harus masuk dalam kelas interval.
2. Banyak kelas interval dapat ditentukan menggunakan aturan Sturgess, yaitu banyak kelas interval = I + 3,3 log n dengan n adalah banyak data.

Penyajian Data Menggunakan Diagram

a. Piktogram
Piktogram adalah suatu cara untuk menampilkan besar data menggunakan gambar yang sesuai dengan datanya. Cara ini paling sederhana dan jelas untuk menyajikan suatu data. Salah satu kelemahan dalam penggunaan piktogram adalah sulitnya membedakan setengah dan satu pertiga gambar atau jumlahnya tidak dapat diwakili dengan satu unit gambar sehingga penggunaan piktogram sangat terbatas.
b. Diagram Batang
Diagram batang adalah cara menyajikan data dalam bentuk batang-batang. Tiap batang lebarnya sama, sedangkan tinggi batang menyatakan frekuensi dari data yang bersangkutan. Untuk membuat diagram batang diperlukan sumbu mendatar dan sumbu tegak yang berpotongan tegak lurus. Sumbu mendatar (horizontal) menunjukkan jenis kategorinya, sedangkan sumbu tegak (vertikal) menunjukkan frekuensinya. Skala sumbu mendatar tidak harus sama dengan skala sumbu tegak. Letak batang yang satu dengan yang lain dibuat terpisah.
c. Diagram Lingkaran
Penyajian data juga dapat dilakukan dengan menggunakan lingkaran. Daerah lingkaran menggambarkan keseluruhan data. Data disajikan dengan menggunakan juring atau sektor, di mana besar sudut pusat dari juring sesuai dengan perbandingan setiap data terhadap keseluruhan data.
d. Diagram Garis
Diagram garis biasanya digunakan untuk menyajikan data yang diperoleh dari waktu ke waktu secara teratur dalam interval waktu tertentu. Diagram garis digunakan untuk mengetahui pertumbuhan/perkembangan suatu hal secara kontinu.

Ukuran Pemusatan

Ukuran pemusatan sekelompok data adalah nilai atau data yang dapat mewakili sekelompok data tersebut atau sering juga disebut rata-rata. Nilai rata-rata pada umumnya mempunyai kecenderungan terletak di tengah-tengah dalam suatu kelompok data yang disusun terurut atau dengan kata lain mempunyai kecenderungan memusat. Misalkan suatu data tinggi badan beberapa siswa (dalam cm) adalah sebagai berikut.
135 140 150 150 150 155 157 160
Dari data di atas tampak bahwa sebagian besar tinggi siswa di sekitar 150. Dengan demikian, 150 disebut ukuran pemusatan dari data tinggi badan siswa. Ada beberapa jenis ukuran pemusatan (ukuran tendensi sentral), antara lain mean. modus. dan median.

Mean (Rataan Hitung)

Mean dari sekumpulan data adalah jumlah seluruh data dibagi banyaknya data. Mean biasanya dilambangkan dengan Jika data terdiri atas n, yaitu x1, x2, x3, ...xn maka mean dari data tersebut dapat dirumuskan sebasai berikut.
Gambar:31.jpg

Modus

Data yang kalian peroleh biasanya bervariasi, ada yang muncul sekali ada yang muncul lebih dari sekali. Data yang paling sering muncul disebut modus. Modus adalah data yang paling sering muncul atau frekuensinya paling tinggi. Pengertian lain adalah nilai data yang sering muncul (mempunyai frekuensi terbesar). Modus dapat ada ataupun tidak ada. Kalaupun ada dapat lebih dari satu.

Median

Median adalah nilai yang terletak di tengah dari data yang terurut. Jika banyak data ganjil, median adalah nilai paling tengah dari data yang sudah diurutkan. Jika banyak data genap, median adalah mean dari dua bilangan yang di tengah setelah data diurutkan.
Median adalah nilai tengah setelah data terurut naik. Pengeritan lain adalah nilai tengah dari data yang telah diurutkan menurut besarnya. Dengan ketentuan: Jika banyak data ganjil, maka median adalah nilai tengah dari data yang telah diurutkan.
Contoh:
Diketahui data
7, 9, 8, 13, 12, 9, 6, 5         n = 8
Jawab :
Rata-rata = 5+6+7+8+9+9+12+13 = 8,625
                             8
Median
Data diurutkan terlebih dahulu menjadi
5 6 7 8 9 9 12 13
median = 8 + 9 = 8,5
                 2
Modus = 9 (sering banyak muncul)

Kuartil

Selain ketiga ukuran pemusatan data di atas, terdapat beberapa ukuran pemusatan lagi. Salah satunya adalah kuartil. Kuartil adalah nilai ukuran yang membagi data yang sudah terurut menjadi empat bagian yang sama. Contoh suatu data terurut seperti berikut.
Data yang terdapat pada batas pengelompokan pertamadisebut kuartil bawah (Q1), batas pengelompokan kedua disebut kuartil tengah (Q2), dan batas pengelompokan ketiga disebut kuartil atas (Q3).
Gambar:32.jpg
Data yang terdapat pada batas pengelompokan pertamadisebut kuartil bawah (Q1), batas pengelompokan kedua disebut kuartil tengah (Q2), dan batas pengelompokan ketiga disebut kuartil atas (Q3).
Untuk menentukan nilai-nilai kuartil, kita tentukan nilai kuartil tengah (Q2) terlebih dahulu. Nilai Q2 adalah median dari data tersebut. Selanjutnya, seluruh data yang berada di sebelah kiri Q2, digunakan untuk mencari Q1. Nilai Q1 adalah median dari data sebelah kiri Q2, sedangkan Q3 adalah median dari seluruh data di sebelah kanan Q2 Selain dengan cara di atas, nilai kuartil dapat ditentukan dengan menggunakan rumus berikut.
Gambar:33.jpg

Histogram dan Poligon Frekuensi

Histogram dan Poligon Frekuensi adalah dua grafik yang menggambarkan distribusi frekuensi. Histogram terdiri dari persegi panjang yang alasnya merupakan panjang kelas interval, sedangkan tingginya sama dengan frekuensi masing-masing kelas interval.
Poligon Frekuensi adalah suatu garis putus putus yang menghubungkan titik tengah ujung batang histogram. Biasanya ditambah dua segmen garis lain yang menghubungkan titik tengah ujung batang pertama dan terakhir dengan titik tengah kelas yang paling ujung dimana frekuensinya bernilai nol.

Pengertian Sampel dan Populasi

Dalam pengumpulan data, jika objek yang diteliti terlalu banyak atau terlalu luas maka sering kali orang menggunakan sebagian saja dari seluruh objek yang diteliti sebagai wakil. Sebagai objek yang dipilih itu disebut sampel, sedangkan seluruh objek tersebut dinamakan populasi. Untuk memahami pengertian populasi dan sampel, perhatikan contoh berikut.
“ucok ingin membeli jeruk pada suatu kios buah di pasar. Agar yakin semua jeruk yang dibelinya manis, ucok tidak ingin mencicipi satu per satu jeruk yang ada di situ. ucok dapat mencicipi salah satu jeruk yang ada dalam keranjang untuk memastikan semua jeruk dalam keranjang rasanya manis”.
Dalam hal ini, jeruk yang dicicipi ucok disebut sampel dan semua jeruk dalam keranjang disebut populasi. Populasi adalah himpunan semua objek yang akan diteliti, sedangkan sampel adalah himpunan bagian dari populasi yang dijadikan pengamatan.

SISTEM PERSAMAAN LINEAR DUA VARIABEL

A. Pengertian SPLDV

Untuk memahami pengertian dan konsep dasar SPLDV, ada baiknya mengulang kembali materi tentang persamaan linear satu variabel. Pelajarilah uraian berikut secara saksama.

1. Persamaan Linear Satu Variabel

Di Kelas VII, kamu telah mempelajari materi tentang persamaan linear satu variabel. Masih ingatkah kamu apa yang dimaksud dengan persamaan linear satu variabel? Coba kamu perhatikan bentuk-bentuk persamaan berikut.
Bentuk-bentuk persamaan tersebut memiliki satu variabel yang belum diketahui nilainya. Bentuk persamaan seperti inilah yang dimaksud dengan linear satu variabel. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.1 secara seksama.



Seperti yang telah dipelajari sebelumnya, untuk penyelesaian dari persamaan linear satu variabel dapat digunakan beberapa cara. Salah satu di antaranya dengan sifat kesamaan. Perhatikan uraian persamaan berikut.
Image:persamaan_5.jpg
Jadi, diperoleh nilai x = 4 dan himpunan penyelesaian, Hp = {4}. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.2 berikut.


2. Persamaan Linear Dua Variabel

Kamu telah mempelajari dan memahami persamaan linear satu variabel. Materi tersebut akan membantu kamu untuk memahami persamaan linear dua variabel. Coba kamu perhatikan bentuk-bentuk persamaaan berikut.
Persamaan-persamaan tersebut memiliki dua variabel yang belum diketahui nilainya. Bentuk inilah yang dimaksud dengan persamaan linear dua variabel. Jadi, persamaan dua variabel adalah persamaan yang hanya memiliki dua variabel dan masing-masing variabel berpangkat satu. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.3 berikut.
Image:persamaan_9.jpg
Image:persamaan_10.jpg
Image:persamaan_11.jpg
Image:persamaan_12.jpg

3. Sistem Persamaan Linear Dua Variabel

Coba kamu perhatikan bentuk-bentuk persamaan linear dua variabel berikut.
Dari uraian tersebut terlihat bahwa masing-masing memiliki dua buah persamaan linear dua variabel. Bentuk inilah yang dimaksud dengan Sistem Persamaan Linear Dua Variabel (SPLDV). Berbeda dengan persamaan dua variabel, SPLDV memiliki penyelesaian atau himpunan penyelesaian yang harus memenuhi kedua persamaan linear dua variabel tersebut. Contoh, perhatikan sistem SPLDV berikut.
Image:persamaan_14.jpg
Penyelesaian dari sistem persamaan linear adalah mencari nilai-nilai x dan y yang dic ari demikian sehingga memenuhi kedua persamaan linear. Perhatikan Tabel 4.1 berikut ini.
Tabel 4.1 menjelaskan bahwa persamaan linear 2x + y = 6 memiliki 4 buah penyelesaian. Adapun persamaan linear x + y = 5 memiliki 6 buah penyelesaian. Manakah yang merupakan penyelesaian dari 2 x + y = 6 dan x + y = 5? Penyelesaian adalah nilai x dan y yang memenuhi kedua persamaan linear tersebut. Perhatikan dari Tabel 4. 1 nilai x = 1 dan y = 4 sama-sama
memenuhi penyelesaian dari kedua persamaan linear tersebut. Jadi, dapat dituliskan:
Image:persamaan_16.jpg
Image:persamaan_17.jpg
Image:persamaan_18.jpg

B. Penyelesaian SPLDV

Seperti yang telah dipelajari sebelumnya, SPLDV adalah persamaan yang memiliki dua buah persamaan linear dua variabel. Penyelesaian SPLDV dapat ditentukan dengan cara mencari nilai variabel yang memenuhi kedua persamaan linear dua variabel tersebut. Pada subbab sebelumnya, kamu telah mempelajari bagaimana cara menentukan penyelesaian suatu SPLDV dengan menggunakan tabel, namun cara seperti itu membutuhkan waktu yang cukup lama. Untuk itu, ada beberapa
metode yang dapat digunakan untuk menentukan penyelesaian SPLDV.
Metode-metode tersebut adalah:
1. Metode Grafik
2. Metode Substitusi
3. Metode Eliminasi
Pelajarilah uraian mengenai metode-metode tersebut pada bagian berikut ini.

1. Metode Grafik

Grafik untuk persamaan linear dua variabel berbentuk garis lurus. Bagaimana dengan SPLDV? Ingat, SPLDV terdiri atas dua buah persamaan dua variabel, berarti SPLDV digambarkan berupa dua buah garis lurus. Penyelesaian dapat ditentukan dengan menentukan titik potong kedua garis lurus tersebut. Untuk lebih jelasnya, coba perhatikan dan pelajari Contoh Soal 4.6 dan Contoh Soal 4.7
Image:persamaan_19.jpg
Image:persamaan_20.jpg
Image:persamaan_21.jpg

2. Metode Substitusi

Penyelesaian SPLDV menggunakan metode substitusi dilakukan dengan cara menyatakan salah satu variabel dalam bentuk variabel yang lain kemudian nilai variabel tersebut menggantikan variabel yang sama dalam persamaan yang lain. Adapun langkah-langkah yang dapat dilakukan untuk menentukan penyelesaian SPLDV dengan menggunakan metode substitusi dapat kamu pelajari dalam Contoh Soal 4.8 dan Contoh Soal 4.9
Image:persamaan_22.jpg
Image:persamaan_23.jpg

3. Metode Eliminasi

Berbeda dengan metode substitusi yang mengganti variabel, metode eliminasi justru menghilangkan salah satu variabel untuk dapat menentukan nilai variabel yang lain. Dengan demikian, koefisien salah satu variabel yang akan dihilangkan haruslah sama atau dibuat sama. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.10 dan Contoh Soal 4.11
Image:persamaan_24.jpg
Image:persamaan_25.jpg

C. Penerapan SPLDV

Dalam kehidupan sehari-hari, banyak sekali permasalahan-permasalahan yang dapat dipecahkan menggunakan SPLDV. Pada umumnya, permasalahan tersebut berkaitan dengan masalah aritmetika sosial. Misalnya, menentukan harga satuan barang, menentukan panjang atau lebar sebidang tanah, dan lain sebagainya. Agar kamu lebih memahami, perhatikan dan pelajari
contoh-contoh soal berikut.
Image:persamaan_26.jpg